
WL-TR-9 1-1122C

T i

AD-A242 682

THE DESIGN AND IMPLEMENTATION OF THE ARIEL

ACTIVE DATABASE RULE SYSTEM

Eric N. Hanson, Capt

W illiam R. Baker

Artificial Intelligence Technology Office

Systems Avionics Division

$)ctober 1991

Final Report for period September 1988 - September 1991

r for p,,b]Ac release; distribution is unlimited,

.. (: i); { P D K CT,'LEA V

P 1 (;A ,. ATOPY

,i SY-'T - TEMS (JMAND
i';i':T-P.,T'KPS,') AIR FflRCF BASE, OHIO 45433-6543

91-15967

D~7CLAMEINOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including

foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

ERIC N. HANSON, CAPT, USAF WILLIAM R. BARER
Research Director Chief, Artificial Intelligence

Technology Office

FOR THE CO-iANDER

7,DZISI1 LEWANTOWICZ, COL, USAF
D -putrDirector, Avionics

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
noLifl ' I V AAA WPAFB, OH 45433-6543 to help us maintaiii a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

UNCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b DECLASSiFiCATiOiJ /DOWNGRADING SCHEDULE is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

WL-TR-9 1-i 122

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable) Avionics Directorate (WL/AAA)

AAA Wright Laboratory
6c ADDRESS (City, State, and ZIPCode) 7b. ADDRESS(City, State, and ZIP Code)

"I'AF13 0, 45433-6543 Wright-Patterson AFB, OH 45433-6543

Ba NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

See 6a. See 6b.
Bc ADDRESS (City, State, and ZIPCode) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
See 6c. ELEMENT NO. NO. NO ACCESSiON NO62204F 2003 05 54

1 1 TITLE (Include Security Classification)

The Design and Implementation of the Ariel Active Database Rule System

12 PERSONAL AUTHOR(S)

Eric N. Hanson , Capt

13a TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
FinalI FROM Sep 88 TO Sep91 10 Oct91 47

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Active database systems, database rule systems, database

triggers -

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

T... paper describes the design and implementation of the Ariel DBMS and it's tightly-coupled
forward-chaining rule system. The query language of Ariel is a subset of POSTQUEL, extended
with a new production-rule sublanguage. Ariel supports traditional relational database query
and update operations efficiently, using a System R-like query processing strategy. In addition,
the Ariel rule system is tightly coupled with query and update processih~g. Ariel rules can have
conditions based on a mix of patterns, events, and transitions. For testing rule conditions, Ariel
makes use of a discrimination network composed of a special data structure for testing single-
relation selection conditions efficiently, and a modified version of the TREAT algorithm, called
A-TREAT, for testing join conditions. The key modification to TREAT (which could also be
used in the Rete algorithm) is the use of virtual a-memory nodes which save storage since they
contain only the predicate associated with the memory node instead of copies of data matching
the predi-atc. The rule-action executor :n Ariel binds the data matching a rule's condition to
the action of the rule at rule fire time, and executes the rule action using the query processor.

20 Y STRIFB;:' iO AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
n , %CASSI ;D)'NLIMITED El SAME AS PPT 01 DTIC USERS Unclassified

'2'a NArMt OF RESPONSBE iNDIVIDtJAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
[,,i] (l [' r (513)255-1491 WL/AAA

DO Form 1473. JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS .AIC,

[1NC IASS I F I El)

JQ&% It 14t i(Al ..

The Design and Implementation of the Ariel
Active Database Rule System t :°

Eric N. Hanson...

WL/AAA-1
Wright Laboratory

Wright- Patterson AFB, OH 45433

September 10, 1991 /..

Abstract

This paper describes the design and implementation of the Ariel DBMS and it's tightly-coupled

forward-chaining rule system. The query language of Ariel is a subset of POSTQUEL, extended
with a new production-rule sublanguage. Ariel supports traditional relational database query

and update operations efficiently, using a System R-like query processing strategy. In addition,
the Ariel rule system is tightly coupled with query and update processing. Ariel rules can have

conditions based on a mix of patterns, events, and transitions. For testing rule conditions, Ariel
makes use of a discrimination network composed of a special data structure for testing single-
relation selection conditions efficiently, and a modified version of the TREAT algorithm, called

A-TREAT, for testing join conditions. The key modification to TREAT (which could also be
used in the Rete algorithm) isthe use of virtual a-memory nodes which save storage since they
contain only the predica sste Thecued with the memory node instead ies p of data matching
the predicate. The rule-action executor in Ariel binds the data matching a rule's condition to
the action of the rule at rule fire time, and executes the rule action using the query processor.

1 Introduction

Designers of database management systems have long wanted to transform databases from passive reposito-

ries for data into actite systems that can respond immediately to a change in the state of the data, an event,
or a transition between states [BC79, Esw76]. However, to create a successful active database system, many

problems must be solved, icinaing:

design of a suitable language ff- expressing active rules,

Sdesign of a condition- testing mechanism for rules that is efficient enough to still allow fast transaction

processing,

'This w,,rk was supported in part by th e ir Fe nre of Scientific Research under grant number AFOSR-89-0286.

Introuctio

2

" integration of rule condition testing and execution with the transaction processing system,

" design of a protocol for allowing rule actions to interact with software external to the DBMS.

The Ariel system is an implementation of a relational DBMS with a built in rule system which has been

designed to address the above issues. The Ariel rule system (ARS) is based on the production system

model [For82]. Our approach has been to adopt as much as possible from previous work on main-memory

production systems such as OPS5 [For81], but make changes where necessary to improve the functionality

and performance of a production system in a database environment. The features of Ariel that distinguish

it from other commercial and research active database rule systems are the following:

* Ariel is a complete implementation of a relational DBMS with a rule system that is tightly coupled

with the query processor,

" the design of Ariel places strong emphasis on efficient testing of rule conditions in a database environ-

ment, and a high-performance discrimination network for testing rule conditions in that environment

has been designed and implemented.

Some other database rule systems have been developed but have not been implemented in a tightly coupled

fashion with the database query processor. These include DIPS [SLR89, RSL891 and RPL [DE88a, DE88b].

Another, HiPAC [DBB+88, Cha89, MD891, has been implemented, but only as a main-memory prototype.

The POSTGRES rule system (PRS) [SHP88, SRH90] and the Starburst rule system (SRS) [WCL91, HCL+90]

have been implemented in a tightly-coupled fashion with their respective database systems. However, neither

the PRS, SRS, DIPS, RPL, nor HiPAC have a rule condition testing network comparable to the 9ne in Ariel.

This paper describes the design and implementation of the Ariel DBMS with particul inphasis on the

ARS. Section 2 describes the query and rule languages used in Ariel. Section 3 give, an overview of the

Ariel system architecture. Section 4 discusses the Ariel rule catalog. Section 5 describes the rule ezecution

monitor which controls execution of triggered rules. Section 6 presents the structure of tokens that are

created by database operations, and the discrimination network used in ,' riel for efficiently testing both

selection and join conditions of rules against those tokens. Section 7 d,icribes optimization and execution

,f rile actions. Section 8 gives some performance results. Finally, 'ic~ion 10 reviews related research, and

section 1 1 summarizes and presents conclusions.

2 The Ariel Query and Rule Languages

Tis section describes the Ariel query and rule languages. The syntax of Ariel rule language (ARL) is covered

in sect e, 2.2 The Sernantics of ARL rule eecution is discussed in section 2.3.

3

2.1 Query LaTnguage

The focus of the Ariel project is on the rule system, so we made the decision to use well-understood database

technology for the other parts of the system wherever possible. We thus decided to use the relational data

model and provide a subset of the POSTQUEL query language of POSTGRES for specifying data definition

commands, queries and updates [SRH90]. POSTQUEL commands retrieve, append, delete, and replace,

are supported, along with other commands for creating and destroying relations and indexes, and performing

utility functions such as loading relations, gathering statistics on data in relations, and so forth. The syntax

of POSTQUEL data manipulation commands is shown below. Square brackets indicate optional clauses.

retrieve (target-list)
from from-list
[where qualification]

append [to] target-relation (target-list)
from from-list]
where qualification]

delete tuple-variable
'from from-list]

iwhere qualification

replace [to] tuple-variabte (target-list)
[from from-list]
[where qualification]

In POSTQUEL, the target-list is used to specify fields to be retrieved or updated, the from-list is used

to specify tuple variable bindings, and the qualification is used to specify a predicate that the data affected

by the command must match. In addition, a relation name can be used as a tuple variable name by default,

avoiding the need to use a from clause in most cases.

Some relations which will be used throughout the paper are the following:

emp(name, age, salary, dno, jno)
dept(dno, name, building)
job(jno, title, paygrade, description)

An example command to retrieve the name and job title of everyone in the "Toy" department is:

retrieve (emp.name, job.title)
where emp.dno = dept.dno

and emp.jno = job.jno

and dept.name - "Toy"

An equivalent command using a tuple variable e to range over the emp relation is:

4

retrieve (e.name, job.title)
from e in emp
where e.dno dept.dno

and e.jno job.jno
and dept.name = "Toy"

For a more detailed description of POSTQUEL, readers are referred to [SRH90[. We now turn to a

discussion of ARL.

2.2 Rule Language

ARL is a production-rule language with enhancements for defining rules with conditions based not only on

patterns, but also on events and transitions. The ARL syntax is based on the syntax of the query language.

Hence, the syntax of the pattern in a rule condition is identical to that for the where clause of a query. The

general form of an ARL rule is the following:

define rule rule-name [in ruleset-name]
[priority priority-va3
Lon event]
,from from-list
[if condition]
then action

A unique rule-name is required for each rule so the rule can be referred to later by the user. The user can

optionally specify a ruleset name to place the rule in a ruleset (use of rulesets will be discussed later). If no

ruleset name is specified, the rule is placed in the system-defined ruleset default-rules. The priority clause

allows specification of a priority to control the order of rule execution. The on clause allows specification of

an event that will trigger the rule. The following types of events can be specified after an on clause:

" append [to] relation-name

* delete [from] relation-name

" replace [tol relation-name (attribute-list)

The condition after the if clause has the following form:

qualification from from-listI

The qualification part of a rule's if condition has the same form as the qualification of a where clause in

it querv. with some exceptions. One exception is that Ariel does not currently support aggregates in rules

hec'ause testing aggregate rule conditions can be very time-consuming. The benefits of aggregate conditions

w. th,ught ti- he wort h the cost for the initial Ariel prototype.

5

The then part of the rule contains the action to be performed when the rule fires. The action can be a

single data manipulation command, or a compound command which is a do ... end block surrounding a list

of commands.

The from clause is for specifying bindings of tuple variables to relations. Relation names can be used as

default tuple variables in both rules and queries.

An if condition specifies a logical predicate, but no target list. No target list is specified because the rela-

tional projection operation is not allowed in rule conditions. The decision not to allow projection was made

since handling projection would require the system to maintain more state information between updates,

and would require extra effort to maintain duplicate counts. The usefulness of projection in rule conditions

was not felt to be worth the performance disadvantage.

There will be cases where a rule must be awakened when any new tuple value is created in a relation

(due to an append or a replace). Since no target list is allowed in rule conditions, we provide the following

conditional expression to reference a relation:

new (tuple-variable)

New can be thought of as a selection condition which is always "true."

2.3 Rule Semantics

The Ariel rule system uses a production system model, where the "working memory" is stored in the database

relations and rules are stored separately in the rule catalog. Execution of rules is governed by a recognize-act

cycle similar to that used in OPS5 [For82]. Ariel rules get an opportunity to wake up after every database

transition. Below, we describe in detail Ariel's treatment of transitions, events, the rule execution cycle, and

rule priorities.

2.3.1 Transitions

A transition in Ariel is defined to be the changes in the database induced by either a single command, or a do

... end block containing a list of simple commands. Blocks may not be nested. The programmer designing

a database transaction thus has control over where transitions occur. If desired, the programmer can put a

do ... end block around all the commands in the transaction so the entire transaction is a single transition.

F>ich command in a transaction will be considered a transition by itself unless it is enclosed in a block.

Blocks are provided to allow programmers to safely update the database with multiple commands when data

integrity or consistency might be temporarily violated during the update. Programmers are encouraged to

only put a block around groups of commands which might violate integrity or consistency, since use of blocks

does incur some performance overhead to be discussed later.

6

2.3.2 Logical vs. Physical Events

In Ariel, triggering of event-based rules is based on logical events rather than physical events. Logical events

are defined as follows. The life of an individual tuple t updated by a single transition always falls in one

of the following four categories, where i, m and d represent insertion, modification (update), and deletion

respectively. Superbcripts * and - indicate a sequence of zero or more and one or more individual updates.

update type description net effect

ir* insertion of t followed by zero or more modifica- insert
tions

md insertion of t followed by zero or more modifica- nothing

_ _ tions and then deletion.
m t existed at the beginning of the transition and modify

was modified one or more times.
S m'd t existed at the beginning of the transition, was delete

modified zero or more times, and then deleted.

The table above shows how the net effect of a sequence of updates to one tuple can be summarized as a

single insert, delete or modify operation, or no operation.

We made the decision to use logical rather than physical events for the following reasons:

1. When multiple event-based rules triggered by the same event are active, execution of one rule may

invalidate (e.g., delete) the data bound to another. If all binding of data to event-based rules occurs at the

time the event occurs, there is no way to avoid execution of rules bound to data that is no longer valid. If

events are treated as logical events as defined in the table above, rules are always bound to valid data when

they execute.

2. 'Ireating events as logical operations provides additional data integrity compared with treating them as

physical operations. For example, consider the rule

define rule NoBobs
on append emp
if emp.name :: "Bob"
then delete emp

The effect of this rule is to never let anyone named "Bob" be appended to the emp relation. Consider

the following block of update commands:

do
append emp(name- "", age=27, sal=55000, dno = 12)
replace emp (name- "Bob") where emp.name

e i (I

If events are interpreted as physical operations, then this sequence of commands will not trigger rule

Noliobs. However, NoBobs will be triggered if the block is treated as the following single logical event:

append emp(namez"Bob", age=27, sal=5500 0 , dno = 12)

In general, interpretation of events as logical rather than physical is expected to be more intuitive and easy to

use for rule programmers, since they will only have to be concerned with effects of database operations, not

the ezpression of them. Since many different sequences of commands can have the same effect, considering

only the logical effects of updates will simplify design of event-based rules.

, 'he above example also shows that it can be difficult to specify event-based rules to achieve a desired goal

(e.g., ensuring that there is none named "Bob" in the emp relation). Hence, we recommend use of purely

pattern-based rules whenever possible, since they will be triggered whenever any data matches a specific

pattern, regardless of the event that created or modified the data. An alternative to the NoBobs rule that

is purely pattern-based is the following:

define rule NoBobs2
if emp.name "- Bob"
then delete emp

This rule deletes all emp records with name "Bob" whether they are created by an append or a replace

command.

2.3.3 Rule Priorities

Each Ariel rule has a priority assigned to it which can be a floating-point number in the range -1000 to 1000.

The priority clause is optional, and if it is not present, priority defaults to 0. Priorities are used to help the

system order the execution of rules when multiple rules are eligible to run. Only rules with priority equal to

the maximum of the priorities of all rules on the agenda are eligible to run.

2.3.4 The Rule Execution Cycle

Rules in Ariel are processed using a control strategy called the recognize-act cycle, shown in Figure 1, which

is commonly used in production systems [For81.1.

The match step finds the set of rules that are eligible to run. The conflict resolution step selects a single

rule for execution from the set of eligible rules. Finally, the act step executes the statements in the rule

action. The cycle repeats until no rules are eligible to run, or the system executes an explicit halt.

2.3.5 Conflict Resolution Phase

The conflict resolution rule for Ariel is a variation of the LEX strategy used in OPS5 [BFKM85]. Ariel picks

a rule to execute during the conflict resolution phase using the following criteria (after each of the steps,

shown below, if there is only one rule still being considered, that rule is scheduled for execution, otherwise

Ihe set ,,7 rules still under consideration is passed to the next step):

8

until (no rules left to run or halt ezecuted)

match

conflict resolution
act

Figure 1: The recognize-act cycle.

* Select the rule(s) with the highest priority.

" Select the rule(s) most recently awakened.

" Select the rule(s) whose condition is the most selective (the selectivity is estimated by the query

optimizer at the time the rule is compiled).

" If more than one rule remains, select one arbitrarily.

2.3.6 Act Phase

Data matching the rule condition is storei in a temporary relation called the P-node. In the act phase,

the statement(s) in the then part of the rule are bound to the P-node for the rule by a process of query

modification [Sto751. The modified syntax tree for the command is then passed to the query optimizer which

generates an optimal query execution plan. The plan is then interpreted to carry out the command. Details

of the query modification procedure will be discussed in section 7.

2.3.7 Event and Transition Cond;tions

()ne feature of Ariel that distinguishes it from most other active database rule systems is support for event

and transition conditions that is fully integrated with pure pattern-based rule condition testing. Notation

for specifying event-based rules was discussed previously. ARL provides a special keyword previous for

referring to the previous value of an attribute. The value that a tuple attribute had at the beginning of a

transition can be accessed using the following notation:

previous tmuple- ,ariable. attribute

A exam pie of'a rule with a transition condition in it is:

deline ride raiseLi mit
if cmp.sal > 1.1 * previous emp.sal
then append to salaryError(emp.name, previous emp.sal, emp.sal)

9

The affect of this rule is to place the name and new/old salary pair of every employee that received a

raise of greater than ten percent in a relation salaryError. Other rules could be defined to trigger on appends

to salarvError to take an appropriate action, such as reversing the update, or notifying a person to verify

the correctness of the update.

As an example of how pattern-based conditions and transition conditions can be combined, suppose we

wished to make the raiseLimit rule specific to just the Toy department. This can be done using a normal

pattern-based condition to select the Toy department, and joining the resulting tuples to the emp tupxi

variable in the normal fashion. A rule that does this is the following:

define rule toyRaiseLimit
if emp.sal > 1.1 * previous emp.sal
and emp.dno = dept.dno
and dept.name = "Toy"
then append to toySalaryError(emp.name, previous emp.sal, emp.sal)

Moreover, event, pattern and transition conditions can all be combined. Consider this example of a rule

that uses all three types of conditions to log "demotion" of an employee in the demotions relation:

define rule findDemotions
on replace emp(jno)
if newjob.3no = emp.jno
and oldjob.jno = previous emp.jno
and newjob.paygrade < oldjob.paygrade
from oldjob in job, newjob in job
then append to demotions

(namezemp.name, dno=emp.dno, oldjno~oldjob.jno, newjno~newjob.jno)

Similar to previous examples, other rules could be made to trigger when new tuples are appended to the

demotions relation to take appropriate action.

2.3.8 Transition Semantics

'here are a number of different possible semantics for transition rules. We identified three possible designs

which will be called level 1, 2 and 3 semantics. Level 1 semantics requires that a transition rule wake

up immediately after the command that causes a transition that satisfies the rule condition. There is no

need to accumulate the net effects of multiple commands to determine which transitions have occurred.

Unfortunately, level I semantics has drawbacks including:

" It is not possible to specify a block of operations in a user transaction and ensure that no rules run

inside that block, since rules must have a chance to wake up after every command.

" There can be no more than one command in a rule action, because transition rules must be run

ruimmediately after the command that triggered them. Since rules cannot run during execution of a

another rule's action, this implies a single command in a rule action.

10

* It is unclear what te do if two or more transition rules match an updated tuple, and the first rule to

execute modifies the tuple. For which new/old pair should the second rule run?

These drawbacks lead us to discard lev.e 1 semantics.

The transition rule semantics actually implemented in Ariel is level 2 as described below. Ariel treats

I ransitins as a set of logical events (insertions, updates and deletions). These logical events are derived by

composing the physical events as they occur. Consider the following sequence of changes to the database,

)brrowing the notation of WFI901, where S, is a database state, E, is the net effect of a transition T,, T, is

at user-issued transition, and T,[Rj] is a transition induced by an execution of rule R2 :

El E2 E3 En
SO S1 S2 S3 ... m,. Sn

T1 T2[R1I T2(R2] Tn[Rn]

The net effect of the transition from state S1 to state Sk is the composition of E1+1 through Ek. For

example, suppose that the following emp tuple is modified by the commands and rules shown:

erip(name "Herman", age 39, sal-20000, dno=5)

User update (El):

do

replace errip(sal -: emp.sal + 1000) where emp.name = "Herman"

replace emp(emp emp.sal f 2000) where emp.name = "Herman"

replace emp(age 40) where emp.name = "Herman"

end

ttule RI action (E2I:

replace emp(sal sir emp.sal 1000) where emp.name = "Herman"

Rule R2 action (E3t:

replace emp(sal erp.sal - 1000) where emp.name --: "Herman"

'[he above sequence tf commands and triggered rules takes that data base from state So to S3 as shown

Il-igirre 2. The net effect of this transition at states So through S3 is also indicated in Figure 2. Rules get

1 ,,pp,,rtunity t.4, run at states SI, .5"2, and S3. A rule with a transition condition on the emp table which

,rggcred for the einplvce "Ierman" at state 5, would be bound to the token shown attached to S, in

I- ii, re ?

lu'o summarize, the net effects of the changes to the database are logically updated after each user-issued

i<,n rur'd or do ... end block, and the changes continue to accurnulate until rules terminate. After rules

11

El E2 E3
SO "S1 . S2 S3

T1 / T2[Rl] T2[R2]

event type = modify event type = modify event type = modify
(nothing) old = ("Herman",39,20000,5) old = ("Herman",39,20000,5) old = ("Herman",39,20000,5)

new = ("Herman",40,23000,5) new = ("Herman",40,24000,5) new = ("Herman",40,23000,5)

Figure 2: Transitions for example command and rules

terminate, the changes are discarded. The old value of each old/new tuple pair accumulated is always the

value that the tuple had at the beginning of the transition. This level 2 semantics allows the net effect

of multiple commands on a tuple to be accumulated, and that net effect to be treated as a single logical

transition. We have shown previously that the ability to combine multiple physical transitions into a single

logical transition can help improve data integrity by reducing the possibility that transition constraints will

be violated but still not trigger transition integrity rules.

A drawback of level 2 semantics is that an anomaly can occur, in which a transition rule wakes up,

modifies the tuple bound to it, and inadvertently re-triggers itself since the net effect of the transition to the

tuple still matches the rule condition. For example, consider the following rule:

define rule extraRaise

if emp.sal > 1.1 * previous emp.sal

then replace emp(sal = emp.sal + 500)

For values of salary greater than zero, this rule triggers itself infinitely in Ariel.

Intuitively, it would be pleasing if the condition of a transition rule referred to the following change in a

tuple t:

" the change in t between the beginning of a transition and the current state,

* or, if the rule has run for t since the beginning of the transition, the change in t between the state the

last time the rule executed and the current state.

This sort, of semantics would help avoid problems such as the infinite self-triggering of the extraRaise rule

a bo Ve.

We contemplated implementing such a semantics in Ariel, called level 3 semantics, but we felt the

rilplenientation complexity would be prohibitive. It would require a log to be kept showing the value of each

updatcd tuple at each database state visited during a user transition and execution of rules it triggered. In

12

addition, there would need to be "high water marks" pointing into the log for each tuple for each transition

rule that had run bound to that tuple. Ariel's level 2 semantics allows triggering based on the net effect of a

transition, and has only moderate implementation complexity, so we felt it was an appropriate choice. The

designers of the Starburst rule system have implemented a form of level 3 semantics, albeit at substantial

implementation complexity and performance overhead [WF90, WCL91]. An interesting topic for further

research would be how to integrate level 3 transition rule semantics in an efficient, discrimination-Aetwork-

based rule condition testing system.

2.3.9 External Functions

The ability to call external functions from within a DBMS query language is quite useful, and some form

of external function interface has been implemented in several systems including ADT-INGRES [Sto86],

POST GRES [SRII90] and STARBURST [HCL+90]. In an active rule system, external functions are even

more important than in a traditional database system since they allow vital communication with external

processes to be performed automatically in the actions of triggered rules. Ariel supports an external function

interface which allows the user to write a function in C, register the function with the DBMS using the define

function command, and then call the function using the execute command. When the function is called,

it is dynamically linked to the Ariel system unless it has been linked previously. The format of the define

function command is:

define function return-type function-name
(argument-list) file-name

The return-type can be one of the built-in types of Ariel, or else void if there is to be no value returned.

Functions can be executed either using the execute command, or from withing an expression evaluation

in another command. The execute command has the following general form:

execute function-name (tarqet-list)
from from-list!
where quatification]

This command L.ecutes the function once for each tuple retrieved in the target-list. Return values are

ignred in this case.

An example function to send a message to the personnel officer if someone is demoted could be defined

as f)lltws:

define function vi d notifvOfl)Cmnotion
(proliame c20) riotifv fl)ermotion .o

Air t-rammpl r d e t kit mmkvs use of this commnand is:

13

define rule notifyOfDemotion
on append to demotions
then execute notifyOfDemotion(demotions.name)

Another example function designed to be used in expressions in a command is:

define function float futureValue
(n=float, yz-float, i=float) "futureValue.o"

This function would compute the future value of n dollars in y years at interest rate i. An example use

of this function is:

retrieve (fv = futureValue(1000,1o,. 10))

This would simply print out the future value of $1000 after 10 years at 10 percent interest. In general,

the futureValue function could be used in any expression anywhere in tne target list or qualification of a

command.

2.4 Rule Language Summary

ARL is a comprehensive active rule language for a relational DBMS. Important features of ARL include:

* support for production-system style programming in a DBMS, with execution semantics similar to

those provided by the OPS5-LEX strategy, plus support for rule priorities and a set-oriented rule

execution style,

* ability to create rules with pattern, event, and transition-based conditions,

" support for one or more data manipulation or external procedure execution commands in a rule action,

* binding of data matching the rule condition to the commands in the rule action at run-time, based on

use of tuple variable names in common between the condition and action.

These features provide a powerful new capability for a relational database system, giving a foundation on

which new active database applications can be built.

3 Architectural Overview

The architecture of Ariel, shown in Figure 3, is similar to that of System R [ABC+76] with additional

components attached for rule processing. Similar to System R and other relational database systems,

Ariel has a front-end consisting of a lexer, parser, semantic analyzer, and query optimizer. The back end of

Ariel consists of a query plan executor, and is built on top of the storage system provided by the EXODUS

14

query language commands

updated tuples

rule network

lexer/parser
selection
network

_ creation ofrule network I syntax

join network

rule manager/
rule Irule catalog query

activat ions processor

rule execution rule action
monitor planner execution of

rule actions

Figure 3: Diagram of the Ariel system architecture.

database toolkit [CDF 186, RC87]. In addition to the standard front and back end components, Ariel has a

rulr catalog for maintaining the definitions of rules, a discrimination network for testing rule conditions, a rule

rxecution monitor for managing rule execution, and a rule action planner for binding the data matching a

rule condition with the rule action and producing an execution plan for that action. Each of these rule-system

components will be discussed in detail below.

4 The Rule Catalog

I he rul, catalog is composed of a collection of Rule objects stored as persistent C ++ objects (we use the

persistcnce features of the E programming language, a persistent extension of C+ J provided with EXODUS

15

l{C871). Each rule object contains the rule name, ruleset name, status of the rule (active or inactive), and

persistent syntax tree for the rule. The persistent rule syntax tree is obtained by making a persistent copy

of the syntax tree output by the parser at the time the rule is defined. The rule catalog maintains the
(deinitions of all rules in the system, and is used whenever a rule is accessed, including the time when a rule

is defined, destroyed, activated, deactivated, or triggered.

5 The Rule Execution Monitor

The rule execution monitor maintains the rule agenda, firing rules as required. The rule agenda is imple-

mented as a priority queue, with one entry, called a priority group, for each group of rules with equal priority.

Within a priority group, rules are ordered such that the one whose condition was most recently matched is

first.

The interface to the RuleExecutionMonitor class includes the following methods:

" addRule called by the rule network when a new combination of tuples matching a rule condition is

found. If the rule is not already on the agenda, an activation for the rule is created, and placed at the

head of the list for the appropriate priority group (a new priority group will be created if no other rule

with the same priority as the added rule is active). The new combination of tuples matching the rule

condition is appended to the P-node for the rule.

" removeRule called by the rule network when a combination of tuples that used to match the rule no

longer matches. This combination of tuples is removed from the P-node for the rule. If the P-node

becomes empty, then the rule instantiation is removed from the agenda.

" runRules called by the query executor at the end of processing a database transition. This method

transfers control to the rule execution monitor, which dispatches the the most recently triggered rule

from the highest priority group for execution by calling the rule action planner.

The methods described above are sufficient to allow the rule execution monitor to maintain a current list of

rules eligible to run, and to assume control and run those rules at the appropriate time.

6 The Discrimination Network

An efficient strategy for incrementally testing rule conditions as small changes in the database occur is

critical for fast rule processing. Ariel contains a rule condition testing network called A-TREAT (short for

Ariel Ti EAT) which is designed to both speed up rule processing in a database environment, and reduce

storage requirements compared with TREAT. The main performance optimization in A-TREAT is the use of

16

a special top-level discrimination network for testing selection conditions of rules [HCKW90]. In addition, we

introduce a technique for reducing the amount of state information stored in the network, whereby oi-mernory

nodes are replaced in some cases by virtual r-memory nodes which contain only the predicate associated with

'he node. not the tuples matching the predicate. In addition to these performance enhancement techniques,

n,.v ohv r1 nnPei ,nmp PnhinrmpntQ ti the standard TREAT net.ork in order tn e test both

transition and event-based conditions with a minimum of restrictions on how such conditions can be used.

All of these techniques are discussed in more detail below.

6. I The Top-level Discrimination Network

Efficient ways to determine which single-relation s-lection predicates match every new and modified tuple

are important in virtually any production rule system. Selection conditions must be tested regardless of how

jin conditions are tested. The predicate testing problem in database rule system is defined as follows. We

are given a database containing a set of n relations, R 1 ... R,, and rn production rules (triggers), r, ...

Rules are of the form

if condition

then action

A rule condition can be an expression containing a conjunction of selection conditions and joins (projection

is nrot allowed in rule conditions). Considering only the selection conditions of the rules, there is a collection

of k single-relation predicates, P, 1 < i < k. Each predicate restricts one or more attributes of a tuple t

from a relation R, where I < j < n. We assume that any predicate containing a disjunction is broken up

into two or more predicates that do not have disjunction, and these predicates are treated separately. The

general form of a predicate purposes of this discussion is a conjunction of the following form:

I', (the tulple t is in relation R,) , C1 A C 2 A ...Cq

where each ('), I -- j , q. is one of the following:

(/ ,onst, p, t.attribute P2 coasft 2

C.' t.attribute ron ltI

(' furnction(t.attribute)

In addition. ,onst, , const 2, both const1 and const 2 are drawn from the domain of legal values for t.attribute,

,Ml)1 01d p2 are one of { , "- }. Equality predicates are a special case of range predicates, but since they

ar. cornmon, thev are listed separatelY. For predicate clauses of the form "function(t.attribute)," nothing

is ossitywd about, the fiintion except that it returns true or false.

lirr. ,r s,,mr' e 'iripihs of predicates on tuples of the relation emp:

17

ernp.salary < 20000 and emp.age > 50

20000 < emp.salary < 30000

emp.name- "Emmett"

IsOdd(emp.dno) and emp.age = 30

In the last predicate above, IsOdd is a function that returns true if its argument is an odd number, and false

otherwise.

Given the collection of predicates described above, and a tuple t, the predicate testing problem is to

determine exactly those Pi's that match t. One approach to testing predicates is to use a predicate index.

Many approaches to the predicate indexing problem have been developed. Below, we review the approaches

proposed previously, and. We then turn to a discussion of pragmatic considerations regarding predicate

indexing in a DBMS. Finally, we present the approach designed for Ariel, and give some performance

measurements.

6.1.1 Review of Predicate Indexing Methods

The simplest method for testing a collection of predicates against a tuple is to store the predicates in a

list, and sequentially test the tuple against every predicate in the list to find matches, with time complexity

0(n) where there are n predicates. A potentially more efficient method is to partition the predicates by

relation using hashing, storing a list of predicates for each relation. To find the predicates matching a

tuple, a hash function is computed on the relation name of the tuple to locate the list of predicatcs for

the relation, and then the predicates on the list are tested sequentially against the tuple. If there are m

relations and n predicates, and the predicates are distributed uniformly over the relations, this technique

has time complexity 0(n/m) for finding the matches. However, in the worst case, where all predicates lie

on one relation, match complexity is again 0(n). This technique is the one normally used in main-memory

implementations of production systems.

" --tkr predicate indexing method discussed in [SSH86. SHP88], called physical locking, involves treating

a predicate clause like a query, and running the standard query optimizer [S+79] to produce an access plan for

the query to be indexed. If the resulting access plan requires an index scan, then special persistent markers

(locks) are placed on all tuples read during the scan, and all index intervals inspected during the scan. If

the resulting access plan is a sequential search, then "lock escalation" is performed, and a relation-level lock

is placed on the relation being scanned. When a tuple is modified or inserted, the system collects locks

that conflict with the update (i.e. all relation level locks, any locks that conflict with any indexes that were

updated, and any other locks previously on the tuple). For each of the locks collected, the system tests the

tuple against the predicate associated with the lock.

18

This algorithm has the advantage that no main-memory is needed to hold a predicate index, so theo-

retically, a very large number of rules can be accommodated. In addition, the algorithm makes use of the

standard indexes and query processor to index predicates. However, a disadvantage to this approach is that

when there are no indexes, or a large number of predicate clauses lie on attributes which do not have an

index, most predicates will have a relation-level lock. This degenerate case requires sequentially testing a new

or modified tuple against all the predicates for a particular relation, resulting in bad worst-case performance

when the number of predicates is large. Also, the set of predicates must be stored in main memory to avoid

costly disk I/O to test a tuple against a predicate when a lock for that predicate is found. This negates some

of the riiernory-saving advantages of the algorithm. In addition, the need to set locks on index intervals and

un tuples complicates the implementation of storage structures.

The final class of selection predicate indexing techniques, called multi-dimensional indezing, utilizes a

multi-dimensional data structure for indexing region data such as an R-tree [Gut84] or R+-tree [SSH861 to

index predicates. The predicates are treated as regions in a k-dimensional space (where k is the number

of attributes in the relation on which the predicates are defined), and inserted into the index. Each new

,r modified tuple is used as a key to search the index to find all predicates that "overlap" the tuple. This

technique works well when most predicates define small closed regions in the space defined by the schema of

the relation from which tuples are drawn. Unfortunately, we expect that the majority of predicates in most

real database rule system applications will define "slices" of this space along only one or two dimensions,

not closed regions. Real relational database applications often involve relations with anywhere from one to

over 100 attributes, with a large fraction of relations having from 5 to 25 attributes. Typical predicates on

these relations (e.g. single-relation selection conditions in WHERE clauses of queries) normally refer to only

one or two attributes, and rarely to three or four [Col89]. Spatial Data structures, particularly R-trees and

It '--trees, index heavily overlapping regions like these predicates poorly, degenerating to what is essentially

a sequential search of all Dredicates in the index.

6.1.2 Practical Considerations for Predicate Indexing in a DBMS

Numerous database rule systems have been proposed recently, including Ariel [Han89], RPL [DE88a], the

POST(;RES rules system fSHP88], HtiPAC [DBB+881, DIPS [SLR89], and others. We envision that appli-

cations built using systems like these will be primarily data management applications, enhanced with rules

which will provide improved data integrity, monitoring capability, and some features similar to those found

ri expert systems.

l)atabase rule system applications will have to handle large volumes of data (perhaps millions of records).

Flowever, we expect that the number of rules in the majority of database rule system applications will be

T)iI en iugh that the set of rules and data structures for rule condition testing will be small enough to fit

19

in main memory. We believe that this assumption is reasonable because rules are a form of intentional data

(schema) as opposed to extensional data (contents). Moreover, the largest expert system applications built

to date have on the order of 10,000 rules [BO89], which is few enough that data structures associated with

the rules will fit in a few megabytes of main memory. More typical rule-based system applications have on

the order of 50 to 1000 rules.

It is possible to concoct hypothetical applications where a tremendous number of rules are used, more

than can fit in a main-memory data structure. Normally, rules in such applications have a very regular

structure. This regular structure can be exploited to redesign the application so that only a few rules are

used in conjunction with a much larger data table. The rules then use pattern matching to extract data from

the table. For example, consider an application for stock reordering in a grocery store. The store might have

50,000 items for sale, with a relation ITEMS containing one tuple for each item. One way to implement the

application would be to have one rule for each item to test whether the stock of the item is below a re-order

threshold. An alternative way to implement the application would be to add a field to the ITEMS table

containing the re-order threshold, and a single rule which compares the current stock level to the re-order

stock level. This second implementation is clearly preferable.

It is standard practice in programming expert systems to put as much of the knowledge as possible into

"facts" (e.g. frames or tuples) and as little as possible into rules. This is done because knowledge structures

are more regular and easier to understand than rules. This practice will be even more important in database

rule system applications, where most of the "knowledge" should be stored in the database, with minimal use

of rules.

The above discussion is a partial justification for building a carefully tuned main-memory predicate index

to test selection predicates of rules. We discuss such a predicate index in the next section.

6.1.3 The Ariel Selection Predicate Index

Here, we introduce a predicate indexing method tailored to the problem of testing rule selection conditions

in a database rule system. The task the algorithm must perform is, given a set of single-relation selection

predicates as described earlier, be able to return a list of all the predicates that match a tuple t from a

relation R. We wanted the algorithm to have the following properties:

i. the ability to support general selection predicates composed of a conjunction of clauses on one or more

attributes of a relation,

2. fast predicate matching performance,

3. the ability to rapidly insert and delete predicates on-line.

20

inserted or deleted

tiples enter here

hash on relation name

) second-level
RI R2 Ri Rn indexes

~separate

lst of \ I -dimensional
non tndexable R.A I Ri.A2 ... Ri.Aj ... Ri.Am index for each

pred cates attribute
tor Ri

interval binary

search tree to

index intervals
and points

Figure 4: High-level diagram of predicate indexing scheme.

In the algorithm used in Ariel, the system builds an index which has at the top level a hash table,

using relation names as keys, similar to high-performance implementations of production systems mentioned

previously. Each entry in the table contains a pointer to a second-level index for each relation. This index

maintains a list of non-indexable predicates. In addition, the second-level index contains a set of one-

dimensional indexes, one for each attribitte of the relation for which one or more indexable predicate clauses

have been defined. All predicates clauses on an attribute which are "indexable" are entered in the index on

that attribute. A diagram of the data structure implementing this strategy is shown in Figure 4.

An appropriate attribute index for use in this arrangement is one that can efficiently support stabbing

querzs, where given a point, the index can be searched to find all intervals that overlap the point. In the

design of Ariel, two separate interval indezes, the interval binary search tree (IBS-tree) and the interval skip

list (IS-list) have been developed for use as these attribute indexes. Both the IS-list and the IBS-tree support

solution of stabbing queries. Given a set of n intervals, performance for both data structures is the same -

()(log 2 ri time for insertion and deletion of an interval, and O(logn + L) for solution of a stabbing query,

where h intervals overlap the query point.

Other interval indexes discussed in the literature, including the segment tree [Sam9o] and the priority

.searh tr-e were considered for Ariel, but did not meet the requirements that:

21

1. the index be efficiently updatable on-line,

2. a relatively straightforward implementation of the index be possible which does not require modification

to index different data types, and

3. the index support fast searching to find all intervals that overlap a query point.

The segment tree does not satisfy the first requirement, and the priority search tree does not satisfy the

second requirement. Both the IBS-tree and IS-list satisfy all three.

The IBS-tree and the skip-list are based on the binary search tree and the skip-list [Pug90], respectively.

They involve transforming the index for point data into an interval index by augmenting the standard data

structure with markers to cover each interval. Markers are placed according to an invariant such that upon

searching for the location of the stabbing query point, one and only one marker will be found for each

overlapping interval. An example IBS-tree and IS-list are shown in Figure 5 and Figure 6, respectively.

For a complete discussion of the IBS-tree and IS-list, readers are referred to [HC90, HCKW90] and [Han9l],

respectively.

6.2 Saving Storage Using Virtual a-memories

Here we describe a variation of the Rete and TREAT algorithms for minimizing storage use in database

rule systems. In the standard Rete and TREAT algorithms, there is an a-memory node for every selection

condition on every tuple-variable present in a rule condition. If the selection conditions are highly selective,

this is not a problem since the a-memories will be small. However, if selection conditions have low selectivity,

then a large fraction of the tuples in the database will qualify, and a-memories will contain a large amount

of data that is redundant since it is already stored in base tables. Storing large amounts of duplicate data

is not acceptable in a database environment since the data tables themselves can be huge (e.g., it is not

unusual for a table to contain several gigabytes of data).

In order to avoid this problem, for memory nodes that would contain a large amount of data, a virtual

memory node can be used which contains a predicate describing the contents of the node rather than the

qualifying data itself. In a sense, this virtual node is a database view. When the virtual node is accessed, the

(possibly modified) predicate stored in the node is processed to derive the value of the node. The predicate

can be modified by substituting constants from a token in place of variables in the predicate to make the

predicate more selective and thus reduce processing time.

The algorithm for processing a single insertion token t in a TREAT network containing a mixture of

stored and virtual a-memory nodes is as follows. A stored a-memory node contains a collection C of the

tuples matching the associated selection predicate. A virtual a-memory node contains a selection predicate

P and the identifier of the relation R on which P is defined. In addition, each transaction r maintains a

22

\; '':j I

S :,12

A A(1

C C B IR G 1)

Figure 5: Example interval binary search tree for intervals shown.

data structure Processed Memories containing a set of the identifiers of the virtual a-memory nodes in which

token t has been in3erted. ProcessedMemories is emptied before processing of each token.

Suppose a single tuple X is to be inserted in R. Before putting X in R, create a token t from X and

propagate t through the selection network. When t filters through the network to an a-memory node A,

the identifier of A is placed in Processed Memories and then t is joined to neighboring a-memories. When

joining t to a memory node A', if A' is a normal a-memory, everything proceeds as in the standard TREAT

algoritm. If A' is virtual, then join t through to the base relation R' identified in A' using predicate P' of

A' as a filter. In addition, if ProcessedMemories contai.is A', then t belongs to to A'. Hence, we must try to

!,,Irl tw copy of t ust placed in A to the copy of t in A'. If t joins to itself, a compound token is created and

it) trcCss continues. At the end of processing t, empty ProcessedMemories, and then insert tuple X in R.

Ar aralogous procedure is used for processing a deletion (-) token.

23

Example intervals:

a. [2,17]
b. (17,201
c. [8,12]
d. [7,7]
e. (-inf,17)

H

e a d c c a b

e a
e

Figure 6: Example interval skip list for intervals shown.

The algorithm just described has the same effect as the normal TREAT strategy because at every step, a

virtual a-memory node implicitly contains ezactly the same set of tokens as a stored a-memory node. This

ensures that if a token joins to itself, it does so exactly the right number of times. A TREAT-based join

condition testing algorithm enhanced with virtual a-memories is being implemented in the Ariel system.

The following rule will be used to illustrate a standard TREAT network, and an A-TREAT network that

accomplishes the same task:

define rule SalesClerkRule
if emp.sal > 30000

and emp.dno = dept.dno
and dept.name "Sales"
and emp.jno = job.jno
and job.title ="Clerk"
then action

The TREAT network for the rule SalesClerkRule is shown in Figure 7. An A-TREAT network for

the rule is shown in Figure 8. The A-TREAT network is identical to the TREAT network, except that

'he riliddle a-memory node (alpha2) is virtual, as indicated by the dashed box around it. If the predicate

sal ,30000 is not very selective, then makingalpha2 be virtual may be a reasonable choice for SalesClerkRule

since it can save a significant amount of storage.

24

root

reln=dept reln-emp reln=job

name="Sales" sal>30000 title="Clerk"

alphal ------ alpha2 ----- alpha3

dept.dno emp.jno

-empdno =job.jno

P (SalesClerkRule)

(B) A TREAT network.

Figure 7: Rete and TREAT networks for rule SalesClerkRule.

The ability to use virtual memory nodes opens up several possible avenues of investigation. It allows

trading space for time in a Rete or TREAT network. When to use a virtual memory node and when not to

Us eMI is an interesting optimization problem. Also, the base relation scan done when joining a token to a

virtual a-memory can be done with any scan algorithm - index scan or sequential scan. Some optimization

strategy is needed to decide whether or not to use an index if one is available, depending on the type of

Idcx (primarv or secondary, hash or B-tree etc.) and the size of the base relation.

6.3 Testing Transition, [vent, and Normal Conditions Together

'.t)ite unlike standard prod ictio l systems, Arie allows rules with transition and event-based conditions in

,Idditiorn to normial conditions. To integrate all these types of conditions into a coherent framework, we

!,,'rteralized the notions of hot h tokens and a-memory nodes.

25

root

relndept reln=emp relnjob

I i 1I
nae"Sales" sal>30000 title"Clerk"

aiphal -- ~ alpha2 ---alpha3
(virtual)

emp.sal>30000
....................... en.jn

dept.dno =job.jno

=emp .dno =o~n

P (SalesClerkRule)

Figure 8: Example A-TREAT network.

6.3.1 Identifying Transitions

To accommodate transitions, in addition to standard + and - tokens, Ariel uses A+ and A~- tokens which

contain a (new,old) pair for a tuple with the value it had before and after being updated. A L\+-token

inserts a new transition event into the rule network, and a A--token removes a transition event from the

rule network. In addition, all tokens have an event-specifier of one of the following forms to indicate the

tyvpe of event which created the token:

* append

* delete

* replace(ta7rqet- list)

26

The target-list included with the replace event specifier indicates which fields of the tuple contained in the

token were updated. On-conditions in the top-level discrimination network are the only conditions that ever

examine the event-specifier on a token. Tokens with their event-specifier are also called eveiLTokens.

In order to send the correct type of token through the network at the correct time, Ariel builds a data

structure containing a pair of A-sets [I,Mj for each relation updated during a transition. Set I contains an

entry for each tuple which was inserted during the current transition. Set M contains an entry for each tuple

that existed in the relation at the beginning of the transition and was modified during the transition. It is

not necessary to maintain a third set for deletions since once a tuple is deleted it cannot be accessed again.

A A-set (I or M) contains a set of entries with the following contents:

eventSpecifier: one of append or replace(target-list), describing the type of event that created the entry.

isDelta: true or false,

tupleValue: a byte string containing a single tuple if isDelta is false, or a pair of old and new tuple values

concatenated together if isDelta is true,

descriptor: a pointer to a format descriptor describing the locations of fields in tupleValue.

The possible sequences of operations that may occur to a single tuple during a transition are shown below

'Ras9 I!:

* Case 1: An insertion of a tuple t followed by one or more modifications oft (im*). The net effect of

this transition is an insertion. The first insert generates an insert+ token, and each modify generates

an insert - followed by an insert containing the new tuple value.

Ixarnple:

transition eventTokens

insert t (insert -)

modify t (insert- then insert+)

modify t (insert- ,then insert+)

" Cas - 2: A ttuple t is inserted, modified one or more times, and then deleted (im*d). The net effect is

nothing. Tokens are generated as in Case I, except that the final delete operation generates an insert

token.

VX it rn pie:

transition eventl'okens

27

insert t (insert)

modify t (insert- then insert+)

delete t (insert-

. Case 3: Tuple t exists prior to a transition in which it is modified one or more times (m+). The net

effect is a modification. The first modify operations generates a modify- token and then a rnodif yA r.

Each subsequent modify operation generates a (modifyA-, followed by a modifyA + .

Example:

{t}: assertion that t exists

transition eventTokens

modify t (modify, then modifyA+)

modify t (nodifyA-, then modifyA +)

modify t (modifyA-, then modifyA +)

" Case 4: Tuple t is modified zero or more times and then deleted (m*d). The net effect is a deletion.

Tokens are generated as in Case 3, except that the final delete operations generates a rnodifyA-,

followed by a delete.

Example:

{ t}: assertion that t exists

transition eventTokens

modify t (rmodify-, then modifyA +)

modify t (modifyA-, then modifyA +)

delete t (odifyA-, then delete-).

These four cases completely specify how tokens are to be created during any possible sequence of updates

to a single tuple. The sequence of updates is identified at run time by using the A-sets [1,M], providing the

information necessary to determine what type of token to create for each operation on a tuple.

6.3.2 Identifying Event and Transition Conditions

If a tuple variable appears in the on clause of an Ariel rule condition, then the selection condition defined on

that variable is considered to be an event-based condition. Similarly, if any tuple variable in the condition has

a previous keyword in front of it, then the selection condition associated with that variable is a transition

condition. Both transition and event-based conditions have the property that the data matching them is

relevant only during the transition in which the matching occurred. Afterwards, the binding between the

28

matching data and the condition should be broken. This is accomplished in Ariel using a-memory nodes

that are dynamic, i.e., they only retain their contents during the current transition.

6.3.3 Summary of Token and a-memory Types

In general, for the Ariel rule condition testing system we have identified four kinds of tokens and seven kinds

of a-memory nodes. The token types are:

token for insertion of a new tuple,

token for deletion of a tuple,

* - token for insertion of a new transition token (new/old pair),

* token for deletion of an old transition token.

The a-memory node types include:

stored-a standard memory node holding a collection of tuples matching the associated selection predicate.

virtual-a virtual memory node holding the predicate but not a collection of matching tuples,

dynanaic-ON-a a dynamic memory node for an ON-condition which has a temporary tuple collection that

is flushed after each database transition,

dyvnamic-TRANS-a a dynamic memory node for a transition-condition which is also used after each

transition.

simple-a an alpha memory for a simple selection predicate for a rule with only one tuple variable in its

condition. Simple memories are only used when the rule has just one tuple variable in its condition.

Simple memories never contain a persistent collection of the data matching the conditions associated

with them since matching data is passed directly to the P-nodes.

sirnple-TRA NS-a A simple memory node for a transition condition.

sirple-ON-a A simple memory node for an event-based (ON) condition.

A different action needs to be taken when each type of token arrives at each type of memory node. The

Ic tionis for each of the possible combinations are shown in the table in Figure 9.

In t he table, " L'. represents projection of just the new part of the new/old pair contained in t. A

"discard " entry indicates that the memory node should ignore the token since the combination is not

defitMd

29

__ .. type of token t
a-memory type + -- -

stored-a insert t delete t insert 7rewt delete 7rnewt

virtual-a insert t delete t insert 7rnet delete 7r,.t

dynamic-ON-a insert t delete t insert 7rLwt delete rewt

dynamic-TRANS-a discard t discard t insert t delete t
simple-a insert t in P- delete t from P- insert 7rmt in delete n, t

node node P-node from P-node
simple-TRANS-a discard t discard t insert t in P- delete t from P-

node node
simple-ON-a insert t in P- delete t from P- insert 7rwt in delete 7rnet

node node P-node from P-node

Figure 9: Table showing actions taken by each a-memory type for each token type

The information in this chart allows the standard TREAT algorithm to be generalized to handle normal

conditions as well as event-based and transition conditions, changing only the behavior of individual com-

ponents, not the overall structure or information flow. This strategy is one of the keys to successful use of

TREAT to support condition testing for the Ariel rule language.

This concludes the discussion of how rule conditions are tested in Ariel. We now turn to the problem of

how to execute a rule action once it has been determined that the rule should fire.

7 Optimization and Execution of Rule Actions

At the time an Ariel rule is scheduled for execution, the data matching the rule condition is stored in the

P-node for the rule. Binding between the condition and action of an Ariel rule is indicated by using the

same tuple variable in both. These tuple variables are called shared. To run the action of the rule, a

query execution plan for each command in the action is generated by the query optimizer. Shared tuple

variables implicitly range over the P-node. When a comnand in the rule action is executed, actual tuples

are bound to the shared tuple variables by including a scan of the P-node in the execution plan for the

command. Optimization and execution of Ariel rule actions is discussed in detail below, and illustrated

using an example.

7.1 Query modification

When an Ariel rule is first defined, its definition, represented as a syntax tree, is placed in the rule catalog. At

the time the rule is activated, the discrimination network for the rule is constructed, and a the binding between

the condition and the action of the rule is made explicit through a process of query modification 'Sto75],

30

define rule SalesClerkRule2
if emp.sal > 30000

and emp.jno - job.jno
and job.title -"Clerk"
then do

append to salary Watch(emp.all)
replace emp (sal = 30000)
where emp.dno dept.dno
and dept.name "Sales"
replace emp (sal - 25000)
where emp.dno dept.dno
and dept.name v "Sales"

end

Figure 10: Example rule to illustrate query modification.

after which the modified definition of the rule is stored in the rule catalog. During query modification,

references to tuple variables shared between the rule condition and the rule action are transformed into

explicit references to the P-node. Specificly, for a tuple variable V found in both the condition and action,

every occurence of an expression of the form V.attribute is replaced by P.V.attribute. In addition, if V is the

target relation of a replace or delete command, then it is replaced by P.V, and the command is modified

to be replace' or delete' as appropriate. The commands replace' and delete' behave similarly to the

standard replace and delete commands, except that the tuples to be modified or deleted are located by

using tuple identifiers that are part of tuples in the P-node, rather than by performing a scan of the relation

ti, be updated.

Flr example, consider the rule shown in Figure 10. After query modification is performed on this rule,

'the ,,rnmands in its action look as shown in Figure 11, where P is a tuple variable that ranges over the

-node. The tuple variable erp which appears both in the condition and action of the rule has been

replaced throughout the action by Pemp in Figure t1. Also, the replace and delete commands have been

I rauisf,,ryned into replace' and delete', respectively. The tuple variable dept which does not appear in the

condition is unchanged in the action.

7.2 Rule action query plan construction

e,, -c c.te a command in the rule action, an execution plan for that command must be generated, and this

pI;,I oust include an operator to scan the P'-node if any tuple variables in the command also appear in the

rule comdition. The Ariel query processor provides an operator called PnodeScan which can scan a P-node

'111dp , jionally apply a selection predicate t, it. When the query optimizer sees the special tuple variable P,

31

then do
append to salaryWatch(P.emp.all)
replace' P.emp (sal = 30000)
where P.emp.dno - dept.dno
and dept.name = "Sales"
replace' P.emp (sal = 25000)
where P.emp.dno = dept.dno

and dept.name "Sales"
end

Figure It: Rule action after query modification.

NestedLoopJoin

left.emp.dno = right.dno

PnodeScan IndexScan

dept.name="Sales"

Figure 12: Example execution plan for a command in a rule action.

it always generates a PnodeSca i to find tuples to be bound to P. The rest of the query plan is constricted

as usual by the query optimizer. For example, consider construction of the plan for the following command

from the action of the rule SalesClerkRule2:

replace' '.,-ip (sal -- 30000)
where f.emp.o.-o - dept.drio
and dept.riame "Sales"

The data to be updated by this command are identified by running a query plan which scans P and

dept, and joins tuples from these Ecans. The tuple identifier of the emp sub-tuples bound to the variable P

is extracted and used to locate the emp tuples to update. One possible query plan the uses a nested loop

a |'nodeScan on P, and an index scan on dept, is shown in Figure 12. The query optimizer is free

lo choose the best operators for other operations in the plan besides the PnodeScan, e.g., it could have

chosen SortkMerge.Join instead of NestedLoopJoin in Figure 12.

32

replan don't replan

good to Correct
replan

bad to \X\1
replan Correct

Figure 13: Outcomes of the rule action replanning decision

7.3 Time of Rule Plan Construction

The time a rule action plan is constructed can have a substantial impact on performance. Our implementation

:ses a strategy called always reoptimize that produces all plans for execution of rule actions at rule fire

tIIme. (ther strategies can be developed which attempt to pre-optimize plans for rule actions, store them, and

retrieve them at rule fire time to avoid the cost of run-time optimization. Strategies or the later type which

we considered include never reoptimize, heuristic, and cache and invalidate. The decision whether to

replan is subject to two types of errors as shown in Figure 13. If we assume that the default assumption is

to rep'ari (this is called the null hypothesis in statistical terminology), then not replanning when it is a good

idea is a type I error and replanning when it is a bad idea is a type H error [FW801.

The different strategies are discussed here:

Always reoptirnize. The advantages of this approach are:

it always runs the optiial plan foi execution uf a Uminiand in a rule action,

it wastes no storage storing plans that will never be run,

since there are no stored plans, it is not required to build a dependency graph showing which

access methods (relations and indexes) each stored plan depends on, and

it is st raight forward to implement (only minor modifications to the optimizer are needed so it can

recognize and use the PnodeScan operator).

Vhf ,onlv disadvantage is that always reoptimiz, must pay the cost of running the query optimizer

f,,,r cn ,rnaind iri a rile action each time the rule is fired.

33

* Never reoptimize. This strategy compiles the plan once and never reoptimizes (unless the plan is

made invalid by a change to the database schema or index structures). This strategy has low run-time

overhead but may result in poor plans being run as they become out-of-date.

* Heuristic. This strategy decides whether to reoptimize the plan at run time using a heuristic that

compares the expected cost of running the plan determined when it was first compiled, and the expected

cost of running the plan given the current state of the database. The heuristic strategy may be better

then never reoptimizing since it can adaptively choose whether to re-optimize. However, it suffers from

an anomaly where the optimal plan could change, but the computed costs of the old plan for the old

and new database are identical (e.g., if for a two-way join, one of the operands grew and the other

shrank).

a Cache and invalidate. An alternative to the heuristic strategy is to store an optimized plan when

the rule is first defined, and then have the routines that gather statistics about the data invalidate

plans if the information the plans are based on gets too out of date. If a complex optimization strategy

is to be implemented, this one seems most promising.

The decision of which of these strategies is best is not a simple one - the outcome can depend on numerous

factors such as the time to compute an optimal query plan, the size of data tables, the type of commands

in rule actions (joins vs. single-relation queries), the availability of indexes, the frequency of updates to the

data, schema, and access methods, the distribution of P-node sizes when rules are triggered etc. If the data,

schema, and indexes never change, then clearly a plan pre-computing strategy such as cache and invalidate

will do better than always recompute. On the other hand, if a caching strategy does not recompute a

plan when it should (say if the invalidation thresholds in cache and invalidate are set too high) then

the caching strategy can run a non-optimal plan with costly results. The difference in plan execution costs

could be in seconds or minutes, while the cost of reoptimization is on the order of 100 milliseconds. When

a pre-planning strategy makes a (type I) error, the results can be devastating. When always recompute

makes an error (which must be of type 11), the penalty is only the time it takes to reoptimize the query.

This intuition, plus the relative simplicity of always recompute made it the preferred choice for the Ariel

implementation. However, a strategy which can drive both type I and II errors to very low levels is clearly

desirable, so a detailed study of how to build such a strategy is an interesting topic for research.

8 Performance Results

Their are three main elements of Ariel's rule processing system that need to be examined from a performance

standpoint:

34

I' a=O

.8 a-.5

time in a= l

.6

.4

0 2(X) 400 600 8(X) IO(X)

number of predicates (N)

Figure 14: Average IBS-tree insertion times for a=0, .5 and 1.

I. the top-level discrimination network,

2. the join network, and

3. the rule action planner.

Performance results for the join network and rule action planner are not yet available. However, some

performance measurements for the top-level discrimination network are presented below (see [Cha90J for a

more complete performance study of the top-level network).

rTo get empirical figures on the performance of IBS-trees, the algorithm was implemented in C++ on a

Sun SPARCstation 1 computer. The balancing scheme using rotations was not implemented, but as with

ordinary binary search trees, the tree is normally balanced if data is inserted in random order. A series of

IBS trees were created which contained N predicates for N between 0 and 1,000. A fraction a of predicates

were simple points of the form attribute - constant, and the remaining fraction 1 - a were closed intervals.

The points and interval boundaries were drawn randomly from a uniform distribution of integers between I

and t0,000. The length of the intervals was drawn randomly from a uniform distribution of integers between

I and 1.000. The average times to insert a predicate for values of a=0, .5 and 1, and increasing values of N

are shown in Figure 14. The average insertion cost was measured as the time to insert N predicates in an

initiallv empty index, divided by N. Since the test does not reflect any balancing cost, insertion times for

balanced IBS-trees will be higher than shown in Figure 14. The average search time to find all predicates

tfhat match a value is plotted in Figure 15 for a -0, .5 and 1, and increasing values of N.

35

.45
.4i

.4l a=0

.35 a=.5

im e i .3

.25

.15

.1

0.05

200 400 600 800 1000

number of predicates (N)

Figure 15: Average IBS-tree search times for a=O, .5 and 1.

As a basis of comparison for the IBS-tree algorithm, the cost of finding the predicates that match a value

by traversing a linked list of predicates and testing each one against the value is shown in Figure 16. The

cost curve for sequential search is always higher than for the IBS-tree, showing that the IBS-tree has quite

low overhead.

As expected, the insertion and search time curves for the IBS-tree both show logarithmic increase in

search time as the number of intervals ircreases. The difference between the curves for the different values

of a (0, .5 and 1) are small, particularly for search time.

When the IBS-tree is integrated into the overall predicate indexing scheme shown in Figure 4, predicate

matching performance will depend on several factors, including:

" the fraction of predicates that are non-indexable,

" the number of attributes per relation,

" the fraction of attributes that have one or more predicate clauses,

* the number of indexable predicate clauses per attribute.

However, we can get an estimate for the time required to find matching predicates using the following

assumptions:

e hash search cost - .A msec,

36

sequential

.8- search

time

in mnsec
.6

.2

IBS-trec

0 5 10 15 20 25 30 35 40

number of predicates (N)

Figure 16: Predicate test cost for IlBS-tree and sequential search.

" fraction of predicates that are indexable = 90%,

" cost to test a predicate against a point in sequential search = .02 msec,

" average number of attributes per relation = 15,

" fraction of attributes per relation with 1 or more predicate clauses = 1/3,

" niurriber of predicates per relation (N) = 200 (assuming that there are 200/5 = 40 predicates per

attribute, the search cost in IBS-tree for one attribute is approximately .13 msec),

" cost to test an entire predicate against a tuple when a partial match is found = .05 msec,

" number of clauses per predicate = 2,

* average selectivity of each predicate clause -i .1.

The ('I usage times for operations shown above are reasonably close to the actual times for a Sun SPARC-

station t. [n this scenario, the cost to search to find the partially matching predicates is the following:

(,st, hash cost

number of attributes searched

lBS-tree search cost

non-indexable predicate test cost

37

This vields the following numeric expression for cost.:

c,,st . 15 . 13 (l - .9)-.02-200

1 5 -..13 -t .A 1. msec

Since there are 200 predicates per relation, and the selectivity of the predicate clauses is .1, that means that

1 200 - 20 predicates must be tested after the initial search. The time to test these is .05 -20 - 1 rnsec.
lhus, the total time for predicate testing is 1.1 + 1 -_ 2.1 msec. This ,s a fairly realistic number for the cost

,,f finding all predicates that match a tuple using the algorithm presented in this paper with a moderate to

large number of rules on a machine the speed of a SPARCstation 1. Given that this is a per-tuple CPU cost,

the time is substantial, but should not be pr 'hibitive. Of course, these are CPU-only costs, and any increase

in CPU speed will cause the predicate testing time to scale down accordingly.

9 Implementation

Ariel is implemented using the EXODUS toolkit [CDF+86, RC871 and in particular the E programming

language [RCS89], an extension of C++ with persistent objects. The current version of Ariel consists of

about 28000 lines of C--/E code. We chose EXODUS and E since they were available at the time the

project was started in 1988, and we wanted to focus our energy primarily on the rule processing subsystem.

We felt the persistence features of E would allow us to create storage structures for relations easily, letti.g

us avoid writing our own storage manager. Moreover, we planned to create a fairly complex persistent data

structure for use as the rule discrimination network, and we felt persistent C++ would allow us to do so

without writing voluminous code to read and write the data structure at system start-up and shutdown time.

In addition, we wanted to take advantage of the object-oriented programming features of C+ -,- to help us

develop a complex system with hopefully less effort than would have been required in C.

In retrospect, we feel that using a persistent, object-oriented programming language was very helpful

for the reasons we had hoped. The persistent objects and collections available in E made it relatively

straightforward to implement the persistent discrimination network, system catalogs, and relations. The

object-oriented programming features of C+ + simplified and streamlined our implementations of the syntax

trees Output by the parser, the query plan trees, and the different types of a-memory nodes. As an example,

the class hierarchy for the query plan operators in Ariel is shown in Figure 17. All three of the class

hierarchies mentioned use polymorphism and inheritance extensively, simplifying them compared to a C-

based implementation.

'I he use of E and C was not without difficulties. One feature of E that caused us a problem is that

there is a distinction in E between regular C++ class types and E dbclass types. E thus does not have

the property of persistence orthogonality where persistence of an object is strictly independent of its type

38

QueryPlanOp

Scan
Relat ionScan
SequentialScan

IndexScan
StoreTemporary

PnodeScan
Join

NestedLoopJoin
Nest edLoopJoinlndexlnner

SortMergeJoin

Project

Figure 17: Class hierarchy for query plan operators in Ariel.

ABC- 8:3' . The type of any object that is persistent in E must be declared as a dbclass and all of its sub-

objects must also be db-objects. Several times we found ourselves wishing to create a persistent instance

of on object (e.g., a syntax tree or a query plan) which wasn't declared as a dbclass since the need for a

persistent instance of the object hadn't been anticipated. This resulted in time consuming maintenance of

the software in which classes were re-defined as dbclasses, and then all sub-objects pointed to by the changed

classes were changed to be dbclasses etc., with the affects rippling outward through the source code.

There are some advantages from the standpoint of language implementation to making a distinction

between database types and normal types, including increased portability, ability to provide an extremely

large persistent address space, and ability to easily reorganize disk-based storage. However, lack of persistence

orthogonality is such a software engineering problem that we feel every effort should be made to develop

persistent languages that do have persistence orthogonality [HHR91]. We are encouraged by development

,,F at least, one commercial implementation of persistent C++, Object Design's ObjectStore[Obj90], which

does have persistence orthogonality, as well as research into persistent virtual-memory in the Cricket project

SZ901 which may simplify implementation of persistent programming languages.

10 Review of Related Work

i here has been a significant amount of research on active databases recently. The main thing that differen-

tiates Ariel from other active database systems is its use of a discrimination network specially designed for

rstting rule conditions efficiently. Other database rule system projects either:

do not address the need for efficient. data structures for finding which rules match a particular tuple

(1t'I, I)E88a, D)F88b, Starburst rule system IWC1,91]),

39

* do not provide a data structure for testing selection conditions, or

* provide a data structure for testing selection conditions which cannot efficiently handle conditions

placed on an arbitrary attribute (e.g., one without an index) (POSTGRES rule system [SHP88, SHP89,

SR1I90], HiPAC [C+891, DIPS [SLR89], Alert [SPAM91]).

Other distinguishing features of Ariel are its close adherence to the product. i. -ystem model, its unified

treatment of rules with normal conditions as well as event-based and transition conditions, its ability to

run rule action commands without creating any additional joins to the P-node, and its use of a rule-action

planner that produces optimal plans for executing rule actions.

The POSTGRES Rule System (SHP88, SHP89, SRH90] is a sophisticated tuple-level rule system that

allows triggers and integrity constraints to be defined with event and pattern-based conditions on a single

tuple. It is a functioning component of the POSTGRES implementation. The POSTGRES designers have

made the choice to trigger rules with single-tuple conditions as soon as the conditions of the rules are satisfied,

(luring processing of a database update command or query. This approach makes it possible to design triggers

with fine-grained, immediate response to changes, as well as implement rules which can modify tuple contents

as data is being retrieved. This latter feature can be useful for implementing security _.d integrity features

such as denying access to certain records or fields to a particular user. However, compared with rule systems

with a rule agenda and scheduling mechanism that runs rules at the end of a command, group of commands,

or transaction, the PRS approach is less flexible in its ability to schedule multiple rules based on recency

and priority. In addition, since PRS is a tuple-level rule system, it can't take advantage of performance

)ptimizations that can be done by set-oriented rule systems that process all data matching a rule condition

together.

The HiPAC system has a sophisticated trigger model which allows specification of multiple coupling

rnodes~ describing the time rule conditions are evaluated and rule actions are run. These include immediate,

deferred, and decoupled modes for both conditions and actions [C+891. In contrast, Ariel executes all rules in

the tlPAC mode condition =immediate and action=deferred. The HiPAC design was partially implemented

in a main-memory-based prototype.

RPI. has a rule language based in SQL which is quite similar to the Ariel rule language. It provides an
interesting model for a production-rule-like trigger language extension for SQL. However, it was implemented

on top of another database system without a significant attempt to optimize rule condition testing [DE88a).

The work on the Data Intensive Production System (DIPS) describes a strategy for implementation of

OPS5 on top of a relational DBMS [SLR891. DIPS uses mechanisms based on tables of partial matches that

test rule conditions differently from traditional Rete and TREAT networks. However, no clear performance

measuirements have been done to show which condition testing strategy is superior.

The Starburst Rule System (SRS) [WF90, WCL91 is a set-oriented rule system built on top of the Star-

hurst extended relational DBMS. Starburst, similar to Ariel, allows specification of rules with sophisticated

i ransitin conditions. SRS provides an elegant form of level 3 transition rule semantics as described in section

2.3.8. However, it does not use any form of discrimination network for testing rule conditions. It essentially

1, required to execute a query for every rule that might be affected by a particular update, which is likely to

;nave pron)ibitive overhead if there are more than a handful of rules per relation.

Alert is another rule system based on top of Starburst which uses an architecture for transforming a

passive)BMS into an Active DBMS [SPAM9II. Alert provides some interesting mechanisms for defining

triggers using queries which return a cursor that can be accessed again to find new matching data even

after an end of file (EOF) has been returned. 'his provides a convenient extension tc relational database

progrinimning facilities to allow them to use data produced by active rules. However, Alert does not have a

rule condition testing mechanism that is efficient for a very general class of rules. Their approach to testing

selection conditions of rules is similar to PRS.

1 1 Conclusions

'['he Ariel project has shown that a database system can be built with an active rule system that is:

o based on the production system model,

* set-oriented.

" tightly integrated with the DBMS,

* implemented in an efficient fashion using (1) a specially designed discrimination network, and (2) a

rifle-action planner that takes advantage of the existing query optimizer.

Ariel is unique in its use of a selection-predicate index that can efficiently test point, interval and range

predicates of rules on anyi attribute of a relation, regardless of whether indexes to support searching (e.g.,

13 -trces) exist on the attribute. In addition, the concept of virtual e- (and 3-) memory nodes introduced

!iA riel can save a tremendous amount of storage, yet still allow efficient testing of rules with joins in their

(onditions. ['he ability to use virtual memory nodes in a database rule system discrimination network opens

4P treniendous possibilities for optimization, in which the most worthy memory nodes would be materialized

1,r ti' bhest possible performance given the available storage. Prior to the development of the virtual memory

(,, onicept, it was iandiatnrv to materialize the a-memory nodes, limiting potential optimizations.

SornC CoITImrnercial database rule systems already support triggers using a general predicate on a single

relat.in (e.g., the coim ercial INGRES system ING891). A selection predicate index like the one for Ariel

REFRENCES 4

could be encorporated systems like this to improve performance with low risk. We hope that in the future, as

experience is gained with A-TREAT style join networks, that commercial systems will be able use A-TREAT

to provide tne added power of triggers with joins in their conditions with fast performance.

For the future, there are a number of potential research avenues for enhancing active database systems,

including:

" support for streamlined development of applications that can receive data from database triggers

asynchronously (e.g., safety and integrity alert monitors, stock tickers),

" optimization of the use of storage available throughout the memory hierarchy (memory, disk, tertiary

store) for storing memory nodes in a combined Rete/TREAT network augmented with virtual memory

no(,d-s,

• support for more efficient rule condition testing and execution in a DBMS using parallelism.

Transformation of databases from passive to active is a landmark in the evolution of DBMS technology. We

hope the development of fast, robust active database systems that may come from this research will lead to

innovative new applications 'hat make more productive use of the information in the DBMS of the future.

12 Acknowledgements

1 would like to thank all the people who have contributed to the Ariel project, including Yu-Wang Wang,

Moez Chaabouni, Michael E. Carey, Chang-Ho Kim, Soon Chung, Y. Satyanarayana, Min Zhang, Anjali

Rastogi, Indira Roy, and Hui Xu. I couldn't have done it without you! In addition, I would like to thank

Abe Waksman and AFOSR for financial support of this project, and William R. Baker for giving me the

freedom to conduct this research.

References

A BC 76 M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Grifliths,
W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade,
and V. Watson. System R: Relational approach to database management. ACM Transactions

on Database Systems, 1(2), June 1976.

ABC' 83 M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An approach
to persistent programming. The Computer Journal, 26(4), 1983. (reprinted in [ZM90]).

BC79 0. P. Buneman and E. K. Clemons. Efficiently monitoring relational databases. A CM Transac-
tions on Database Systems, 4(3):368-382, September 1979.

BFKM85] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Systems in OPS5: an
Introduction to Rule-Based Programming. Addison Wesley, 1985.

L:b'II{<N CES 42

B089. Virginia E. Barker and Dennis E. O'Connor. Expert systems for configuration at Digital: XCON
and beyond. CA.CM, 32(3), March 1989.

(C897 S. Chakravarthv et al. HiPAC: A research project in active, time-constained database man-
agement, Final Technical Report. Technical Report XAIT-89-02, Xerox Advanced Information
Technology, August 1989.

('1):' 86 M. Carey, D. DeWitt, D. Frank, G. Graefe, J. Richardson, E. Shekita, and M. Muralikrishna.
The architecture of the EXODUS extensible DBMS. In Procedings of the International Workshop
on Object-Oriented Database Systems, September 1986.

(has9 Sharma Chakravarthy. Rule management and evaluation: An active DBMS perspective. SIG-
MOD Record, 18(3):20--28, September 1989.

Cha90! Moez Chaabouni. A top-level discrimination network for database rule systems. Master's thesis,
Dept. of Computer Science and Eng., Wright State Univ., December 1990.

(,9 l.arrv Collins. Informal survey of relational database applications at Wright-Patterson AFB.
(personal communication), 1989.

IMBB* 88 U. Dayal, B. Blaustein, A. Buchmann, et al. The HiPAC project: Combining active databases
and timing constraints. SIGMOD Record, 17(1):51-70, March 1988.

l)E88a Lois M. L. Delcambre and James N. Etheredge. The relational production language: A produc-
tion language for relational databases. In Proceedings of the Second International Conference
on Ezpert Database Systems, pages 153-162, April 1988.

DES8b: Lois M. L. Delcambre and James N. Etheredge. A self-controlling interpreter for the relational
production language. In Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, pages 396-403, Chicago IL, June 1988.

Esw76' K. 1P. Eswaran. Specifications, implementations ind interactions of a trigger subsystem in an
integrated database system. Technical report, IBM Research Laboratory, San Jose, CA, 1976.

lFor8 I Charles L. Forgy. OPS5 user's manual. Technical Report CMU-CS-81-135, Carnegie-Mellon
University, Pittsburgh, PA 15213, July 1981.

For82 C. L. Forgy Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence, 19:17-37, 1982.

FVW80 J. F. Freund and R. E. Walpole. Mathamatical Statistics. Prentice-Hall, 1980.

(;tt 8-1 A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the
1984 ACM SIGMOD International Conference on Management of Data, June 1984.

flan89 Eric N. Hanson. An initial report on the design of Ariel: a DBMS with an integrated production
rule system. SIGMOD Record, 18(3), September 1989.

Illan9l Eric N. Hanson. The interval skip list: A data structure for finding all intervals that overlap
a point. In Proceedings of the 1991 Workshop on Algorithms and Data Structures. Springer
Vcrlag, August 1991.

[(90, Eric N. Hanson and Moez Chaabouni. The IBS tree: A data structure for finding all intervals
that overlap a point. Technical Report WSU-CS-90-11, Wright State University, April 1990.

ilCKw901 Eric N. Hanson, Moez Chaabouni, Chang-ho Kim, and Yu-wang Wang. A predicate matching
algorithm for database rule systems. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, May 1990.

REFERENCES 43

IICL 901 L. Haas, W. Chang, G. M. Lohman, et al. Starburst mid-Ilight: as the dust clears. IEEE
Transactions on Knowledge and Data Engineering, 2(1), March 1990.

HHR91 Eric N. Hanson, Tina Harvey, and Mark Roth. Experiences in DBMS implementation using an
object-oriented persistent programming language and a database toolkit. In Proceedings of the
1991 ACM Conference on Object-oriented Programming Systems, Languages and Applications,
October t991. Also appears as WSU-CS-90-17.

ING89 INGRES Corporation. INGRES/SQL Reference Manual, November 1989. Version 6.3.

MD891 Dennis R. McCarthy and Umeshwar Dayal. The architecture of an active data base management
system. In Proceedings of the 1989 ACM SIGMOL International Conference on Management
of Data, June 1989.

Obj90J Object Design, Inc. ObjectStore technical overview, release 1.0, August 1990.

Pug901 William Pugh. Skip lists: A probabilistic alternative to balanced trees. Corn Tuinications of the
AICM, 3(6), June 1990.

Ras91; Anjali Rastogi. Transition and event condition testing and rule execution in Ariel. Master's
thesis, Dept. of Computer Science and Eng., Wright State Univ., June 1991.

RC87' Joel E. Richardson and Michael J. Carey. Programming constructs for database system imple-
mentation in EXODUS. In Proceedings of the 1987 ACM SIGMOD International Conference
on Management of Data, May 1987.

tCS891 Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. The design of the E programming
language. Technical report, University of Wiqconsin, 1989.

RSL891 fouiqa Raschid, Timos Sellis, and Chih-Chen Lin. Exploiting concurrency in a DBMS imple-
mentation for production systems. Technical Report UMIACS-TR-89-5, University of Maryland,
January 1989.

S- 79 P. Selinger et al. Access path selection in a relational database management system. In Proceed-
Ings of the 1979 ACM SIGMOD International Conference on Management of Data, June 1979.
(reprinted in [Sto881).

Sam90;} Hanan Samet. The Design and Analysis of Spatial Data Structures. Addision Wesley, 1990.

SHP88 Michael Stonebraker, Eric Hanson, and Spiros Potamianos. The POSTGRES rule manager.
IEEE Transactions on Software Engineering, 14(7):897-907, July 1988.

SHIP89 M. Stonebraker, M. Hearst, and S. Potaminos. A commentary on the POSTGRES rules system.
SIGMOD Record, 18(3), September 1989.

SLR891 Timos Sellis, Chih-Chen Lin, and Louiqa Raschid. Data intensive production systems: The
DIPS approach. SIGMOD Record, September 1989.

'SPAM911 Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C. Mohan. Alert: An architecture for
transforming a passive DBMS into an active DBMS. In Proc. 17th International Conference on
Very Large Data Bases, Barcelona, September 1991.

SRH901 Michael Stonebraker, Lawrence Rowe, and Michael Hirohama. The implementation of POST-
GRES. IEEE Transactions on Knowledge and Data Engineering, 2(7):125-142, March 1990.

SSH86J M. Stonebraker, 1. Sellis, and E. Hanson. An analysis of rule indexing implementations in data
base systems. In Proceedings of the First Annual Conference on Ezpert Database Systems, April
1986.

;11. FI-i:<NCjES- 1I

Sto75 M. Stonebraker. Implementation of integrity constraints and views by query modification. In
Proc, dings of the 1975 ACAI SIGMIOD International Conference on Mlanagement of Data, Jutne
19 75.

Mlichael Stoniebraker. Inclusion of new types in relational database systems. In Proceedings of
IEEE' Dita Eriirering Conference, pages 262-269, 1986. (reprinted in [Sto881).

1 ' "? Michael t'.,nebraker. editor. Readings in Database Systems. Morgan Kaufmann, 1988.

Eugene Sliekita and Michael Zwilling. Cricke.: A mapped, persistent object store. Technical
report, iiversitv of WAisconsin, Fall 1990.

WV('L9~ i enif'r Widotii, Roberta J. Cochrane, and Bruce G. Lindsay. Implementing set-orienteu pro-
diiction rilles as ant extension to Starburst. In Proceedings of the Seventeenth IntU:rnational
C'onf rrnco on Vrry Large Data Bases, 1991.

Po' Jennifer \Viiluin arid Sheldon J . Finkelstein. Set-oricnitc,' production rules in relational database

svsterns It- Pr,,,edings of the 199u0 .4CM SIGMOD International Conference on Management
(,f Pata. 1990i.

Z/.\I9)o Stanlev B. /donlk andl David Maier, editors. Readings in Object-Oriented Databases. Morgan
Kauifmiann, 1990.

